Interface Technology

High voltage signal conditioner

P41000 AG

The First Signal Conditioner with "Knick Curve" for Precise Measurement of DC Currents in Normal Operation and Measurement of Very High Currents in Overload Conditions

P41000 AG (adaptive gain) is designed to measure currents in electrical supply systems and large power-consuming devices.

In addition to precise current measurements in normal operation, it also measures high overload currents occurring in the event of a fault,
e.g., due to short circuits, defects, storm damage, etc.

The current curves over time measured with the P41000 AG are analyzed with protective devices so as to interrupt the power supply early on in the event of a fault.

In order to enable key conclusions about the condition of the system, it is important to know the level and duration of the overload currents up to the time the power supply was interrupted. The P41000 AG makes this possible.

Facts and Features

- The P41000 AG fulfills two tasks in a single product:
- Continuous measurement of the regular supply current for timely detection of overcurrent events.
- Measurement, until disconnection, of the large overcurrents occurring in the event of a fault.
- This saves the need for an additional signal conditioner to measure overload currents and an additional measuring channel in a downstream protective device.
- With the P41000 AG, currents are always measured in combination with a (Maconic) shunt resistor. The P41000 AG measures shunt voltages of between 30 and 120 mV .

P41000 AG

Product Line

Input		Output	Test voltage	Product Code for Version	
Insertable jumperInsertable jumper in terminals in terminals 5 and 6 6 and 7				Without open circuit detection	With open circuit detection
$\pm 10 \mathrm{mV}$	$\pm 30 \mathrm{mV}$	$4 \ldots 16 \mathrm{~mA}$	10 kV	P41000D1AG-00011)	P41001D1AG-00011)
			15 kV	P41100D1AG-00011)	P41101D1AG-00011)
$\pm 30 \mathrm{mV}$	$\pm 60 \mathrm{mV}$	$4 . . .16 \mathrm{~mA}$	10 kV	P41000D1AG-0007	P41001D1AG-0007
			15 kV	P41100D1AG-0007	P41101D1AG-0007
$\pm 50 \mathrm{mV}$	$\pm 100 \mathrm{mV}$	$4 \ldots 16 \mathrm{~mA}$	10 kV	P41000D1AG-0002	P41001D1AG-0002
			15 kV	P41100D1AG-0002	P41101D1AG-0002
$\pm 60 \mathrm{mV}$	$\pm 120 \mathrm{mV}$	$4 \ldots 16 \mathrm{~mA}$	10 kV	P41000D1AG-0003	P41001D1AG-0003
			15 kV	P41100D1AG-0003	P41101D1AG-0003
0 ... 10 mV	0 ... 30 mV	$4 \ldots 16 \mathrm{~mA}$	10 kV	P41000D1AG-00041)	P41001D1AG-00041)
			15 kV	P41100D1AG-00041)	P41101D1AG-00041)
$0 . . .30 \mathrm{mV}$	$0 . . .60 \mathrm{mV}$	$4 . . .16 \mathrm{~mA}$	10 kV	P41000D1AG-0008	P41001D1AG-0008
			15 kV	P41100D1AG-0008	P41101D1AG-0008
$0 \ldots 50 \mathrm{mV}$	0 ... 100 mV	$4 . . .16 \mathrm{~mA}$	10 kV	P41000D1AG-0005	P41001D1AG-0005
			15 kV	P41100D1AG-0005	P41101D1AG-0005
$0 . . .60 \mathrm{mV}$	0 ... 120 mV	$4 . . .16 \mathrm{~mA}$	10 kV	P41000D1AG-0006	P41001D1AG-0006
			15 kV	P41100D1AG-0006	P41101D1AG-0006

1) On request

Application Example

Current measurement via shunt resistor

Transmission Curves

Unipolar Transmission Curve

Unipolar Transmission Curve

P41000 AG

Hysteresis at Switch Point as Example of Bipolar Transmission Curve

When passing the switch point, the gain switches with a delay (hysteresis).

Interface Technology

High voltage signal conditioner

Specifications

Input	Bipolar	$\begin{aligned} & -10 \mathrm{mV} \text {... } 10 \mathrm{mV},-30 \mathrm{mV} \text {... } 30 \mathrm{mV} \\ & -50 \mathrm{mV} \text {... } 50 \mathrm{mV},-60 \mathrm{mV} \text {... } 60 \mathrm{mV} \\ & -100 \mathrm{mV} \text {... } 100 \mathrm{mV},-120 \mathrm{mV} \text {... } 120 \mathrm{mV} \end{aligned}$
	Unipolar	$\begin{aligned} & 0 \mathrm{mV} \text {... } 10 \mathrm{mV}, 0 \mathrm{mV} \text {... } 30 \mathrm{mV} \\ & 0 \mathrm{mV} \text {... } 50 \mathrm{mV}, 0 \mathrm{mV} \text {... } 60 \mathrm{mV} \\ & 0 \mathrm{mV} \text {... } 100 \mathrm{mV}, 0 \mathrm{mV} \text {... } 120 \mathrm{mV} \end{aligned}$

Input resistance
 Input capacitance

Overload capacity, permanent
Overload capacity, transient

Approx. $100 \mathrm{k} \Omega$	
$<12 \mathrm{nF}$	
1100% of $\mathrm{U}_{\mathrm{in}, \text { nom }}$	
$10 \mathrm{~V} \quad$ for max. 500 ms / once per hour	

Output

Output (nominal)
Max. output current
Max. load
Ripple

Transmission Behavior

Input - $1 \times \mathrm{U}_{\text {in, nom }} \ldots 1 \times \mathrm{U}_{\text {in, nom }}$
Input $0 \ldots 1 \times U_{\text {in,nom }}$
Input $1 \times U_{i n, \text { nom }} \ldots 11 \times U_{i n, n o m}$
Gain switch point
Hysteresis at switch point
Cutoff frequency (-3 dB)
Common-mode rejection ratio
Temperature influence ${ }^{2)}$

4 ... $16 \mathrm{~mA} . . .24 \mathrm{~mA}$
$25 \mathrm{~mA}<\mathrm{I}_{\text {out }}<55 \mathrm{~mA} @ 0 \Omega$ load
400Ω
$\mathrm{I}_{\mathrm{rms}}=50 \mu \mathrm{~A}\left(\mathrm{R}_{\mathrm{L}}=250 \Omega\right)$

Output	Gain	Gain error
$4 \ldots 16 \mathrm{~mA}$	$6 \mathrm{~mA} / \mathrm{U}_{\text {in,nom }}$	$\pm 0.1 \%$ of measured value $\pm 20 \mu \mathrm{~A}$
$4 \ldots 16 \mathrm{~mA}$	$12 \mathrm{~mA} / \mathrm{U}_{\text {in,nom }}$	$\pm 0.1 \%$ of measured value $\pm 20 \mu \mathrm{~A}$
$16 \ldots 24 \mathrm{~mA}$	$0.8 \mathrm{~mA} / \mathrm{U}_{\text {in,nom }}$	$\pm 0.5 \%$ of measured value $\pm 300 \mu \mathrm{~A}$
$1 \times \mathrm{U}_{\text {in,nom }}$		
$\operatorname{max.~} 12 \% \times \mathrm{U}_{\text {in,nom }}$		
$>5 \mathrm{kHz}$		
CMRR 1)	$>110 \mathrm{~dB}$ (applies to $1 \times \mathrm{U}_{\text {in,nom }}$ range)	
$<50 \mathrm{ppm} / \mathrm{K}$ full scale		

Power Supply

Power consumption, max.
Power consumption, type
$<2 \mathrm{~W}$ at $-25^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right) ; 20 \mathrm{~V}$ supply; full scale; 0Ω load
<1.2 W
Broad-range power supply 22 ... $230 \mathrm{~V} \pm 10$ \%

Insulation

Galvanic isolation
Type test voltage

3-port isolation between input, output, and power supply Input - output/power supply P410** 10 kV AC, 1 min P411** $\quad 15$ kV AC, 1 min

Output - power supply 4 kV AC, 1 min

P41000 AG

Specifications

Routine test voltage
Working voltage (basic insulation) according to DIN EN 61010-13)
Rated insulation voltage
according to EN 50124-1
Protection against electric shock

Dependent on the version (see Product Line, p. 3)
Up to 3600 V AC/DC across input, output, and power supply with overvoltage category III and pollution degree 2
(fast transients: max. 20 kV).
Up to 3600 V AC/DC across input, output, and power supply with overvoltage category III and pollution degree 2

Protective separation according to EN 61140 by reinforced insulation according to EN 61010-1. Working voltages with overvoltage category III and pollution degree 2 :
Up to 1800 V across input, output, and power supply, up to 300 V across output and power supply

Standards and Approvals

EMC ${ }^{4)}$

Open Circuit Detection
Diagnostic current impressed in the shunt
Additional error $\Delta \mathrm{F}$ in [\%]
$\mathrm{I}_{\text {out }}$ at open circuit
$\mathrm{R}_{\text {cable }}>100 \mathrm{k} \Omega$
Device
Ambient temperature ${ }^{5}$)
Design
Degree of protection
Mounting
Weight

Product family standard: Emitted interference: Immunity to interference:
$\mathrm{I}_{\text {diag }}<20 \mu \mathrm{~A}$
$\Delta \mathrm{F}<\mathrm{I}_{\text {diag }} \times\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}\right) \times 100 /\left(\mathrm{I} \times \mathrm{R}_{\mathrm{S}}\right)$
R_{L} : Shunt to signal conditioner total cable resistance
R_{S} : Shunt resistor
I: Measuring current
> 25 mA @ max. 400Ω load
$-10 \ldots 70^{\circ} \mathrm{C}\left(14 \ldots 158^{\circ} \mathrm{F}\right)$
Modular housing with screw terminals, housing width D1: 22.5 mm , see Dimension Drawings for other measurements
Housing IP40, terminals IP20
35 mm DIN rail for snap-on mounting according to EN 60715
Approx. 180 g

Interface Technology

High voltage signal conditioner

Dimension Drawing

P41000 AG

Terminal Assignments

