## Speed signal doubler



### P16800

**Doubling, Conversion, and Isolation of Speed Sensor Signals** 

The P16800 speed signal doubler is used to double the signals from speed sensors. It decouples signals from single or dual-channel speed sensors in a functionally safe and non-interacting manner in accordance with EN 50129 (SIL 4). The pulses are transmitted 1:1 from the input to the output, i.e., frequency and phase angle remain unchanged. The transmission of the rotary encoder signals is also functionally safe in accordance with EN 50129 (SIL 2), whereby the P16800 also galvanically isolates the signals. For the connected controller, the outputs of the P16800 appear like a rotary encoder. Like the rotary encoders, the P16800 is supplied with power via the connected controller.

If required, the signal can be converted from a current signal to a voltage signal or from a voltage signal to a current signal. Optionally, the frequency at the output can be reduced compared to the input at a ratio of 2:1, 4:1, or 8:1.

Use of the P16800 simplifies the retrofitting of rolling stock with control systems that require speed information, or makes such retrofitting possible in the first place. In new vehicles, the number of speed sensors can also be reduced, which optimizes acquisition and maintenance costs.

### **Function**

- Doubling of speed signals and thus simplification of system integration in rolling stock
- Optional conversion of the speed signal and thus increased compatibility of speed sensors
- Galvanic isolation of the speed signal and thus protection of downstream components
- Functionally safe signal processing according to EN 50129 (SIL 4 and SIL 2)
- Compact modular housing for DIN rail or wall mounting





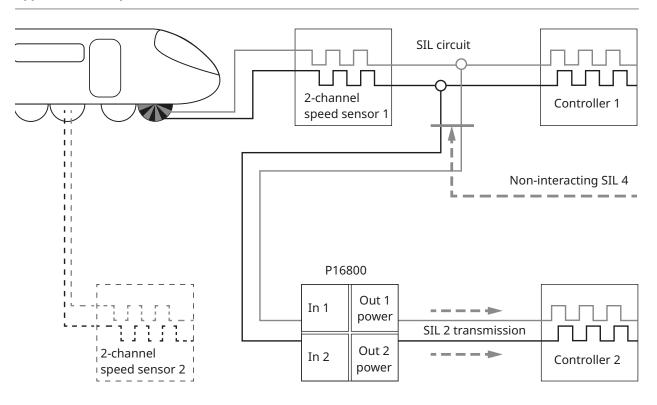











### **Product Line**

| Speed signal doubler        |                                                                 | P 1 6 | 8 |   | Р | 3  | 1    | /  | 0 |
|-----------------------------|-----------------------------------------------------------------|-------|---|---|---|----|------|----|---|
| Input/output                | Pulses                                                          |       | 8 |   |   |    |      |    |   |
|                             | 1 input -> 1 output                                             |       |   | 1 |   |    |      |    |   |
|                             | 2 inputs -> 2 outputs                                           |       | : | 2 |   |    |      |    |   |
|                             | 2 inputs -> 1 output and DOT (direction of travel)              |       | : | 3 |   |    |      |    |   |
| SIL                         | None                                                            |       |   | 0 |   |    |      |    |   |
|                             | With non-interacting input (SII                                 | _ 4)  |   | 1 |   |    |      |    |   |
|                             | With non-interacting input (SIL transmission of signals to outp |       |   | 2 |   |    |      |    |   |
| Modular housing             |                                                                 |       |   |   | Р | 3  |      |    |   |
| Two-tier terminals          | Push-in version, pluggable                                      |       |   |   |   |    | 1    |    |   |
| Frequency division          | 1:1 and 2:1                                                     |       |   |   |   |    |      | 2  |   |
|                             | 1:1 and 4:1                                                     |       |   |   |   |    |      | 4  |   |
|                             | 1:1 and 8:1                                                     |       |   |   |   |    |      | 8  | ; |
| Voltage supply/power supply | 12 24 V                                                         |       |   |   |   |    |      |    | 0 |
| Accessories                 |                                                                 |       |   |   |   |    |      |    | _ |
| Wall-mount adapter          |                                                                 |       |   |   | _ | ΖL | J147 | 72 |   |

P16800 Knick > | 3

# Speed signal doubler

### **Application Example**





### **Specifications**

Inputs

Waveform Square

Input sources Signals from a speed sensor

Speed encoder supply From primary controller or via external supply

**Voltage Input** 

Voltage input U<sub>s</sub> 10 ... 33.6 V DC ± 2 % peak-peak (max. 35 V) Fault detection US <  $\approx$  9.5V; open line U<sub>S</sub>, switch SW opens

Switching level < 30 % of U<sub>s</sub> Logical 0:

Low: 6/7 mA

High 14/20 mA

 $> 70 \% \text{ of } U_S$ Logical 1:

Signal level tolerance < 10 %

Protection from overload/external

voltage

Up to max. 35 V DC continuous load

Input resistance > 120 kΩ

> With absence of interaction SIL 4:  $> 60 \text{ k}\Omega$

Input capacitance ≤ 100 pF

**Current Input** 

Switching level (dependent on

setting of the DIP switches)

Fault detection < 2.2 mA; open line

Signal level tolerance < 5 % Voltage drop < 0.7 V

Protection from overload Up to max. 0.2 A DC continuous load

< 20 Ω Input resistance

With absence of interaction: Voltage drop < 1 V

Output

Waveform Square

Output types Current or voltage signal

The two output circuits do not need to be configured identically.

Logical 0 (low): < 8.5 mA

Switch SW opens

Logical 1 (high): > 12.5 mA

Signal conversion options Current -> current

> Voltage -> voltage Current -> voltage Voltage -> current

Knick > | 5 P16800

## Speed signal doubler

#### **Specifications**

| Volta | an | Out | nut |
|-------|----|-----|-----|
| voita | чe | Out | μuι |

Voltage level Low: < 1 V

High  $\approx U_B$ 

High ( $U_B$  open):  $\approx 5 \text{ V}$ 

7.2 V  $\pm$  0.3 V with detected standstill (U<sub>B</sub> may not be open)

Reaction to middle voltage at

input of P16800

Dependent on U<sub>S</sub> and prior input level

Voltage signal load capability Max. 20 mA

Max. 2 mA with detected standstill

Protection from overload caused

by external voltage

Up to max.  $U_B/max$ . 200 mA

Short-circuit response

Short-circuit-proof (limited to 50 mA)

Voltage output cable lengths Max. 100 m (0.25 nF/m)

Rise time

 $t_{10...90} < 10 \mu s$ 

#### **Current Output**

Passive current output,

configurable

configurable

Suitable for following

control inputs:

Low 6 mA / High 14 mA, Low 7 mA / High 14 mA

Low 6 mA / High 20 mA, Low 7 mA / High 20 mA

Active current output, Suitable for following c

ontrol inputs:

Low 6 mA / High 14 mA,

Low 7 mA / High 14 mA Low 6 mA / High 20 mA, Low 7 mA / High 20 mA

 $R_{OUT}$  < 250  $\Omega$ 

Fault current signal No

NO

Can be activated at the factory:

With detected error 0 mA

Current signal level error Max. 2 mA

< U<sub>B</sub> - 2 V at 20 mA

< 5 V, if U<sub>B</sub> open

Internal parallel resistance to

Maximum load voltage

output

>150 kΩ

Overload capacity, external

voltage

Up to max.  $U_B$  / max. 200 mA

Open-circuit response

Open-circuit-proof

Rise time

 $t_{10...90}$  < 10 µs (pulse edge slope for resistive loads)



#### **Specifications**

Switching output (solid state

relay): SW

33.6 V / 100 mA

 $U_{SW max} / I_{SW max}$ Internal voltage drop

I<sub>SW</sub> with open switch

< 0.2 V at 20 mA

U<sub>SW</sub> with open switch without

> 1 V

external switching voltage

Approx. 130 µA

Reference potential Fault response time **GND** < 1 s

#### **Transmission Behavior**

Rated frequency range Duty cycle of speed sensor signals to be transmitted

0 ... 25 kHz 20 % ... 80 %

Response time

t<sub>99</sub> < 1 ms

Response time difference in both

< 10 µs

channels

P168\*\*\*\*/2\*: 1:1, 2:1,

Switchable

Fault contact, normally closed contact (NC), opens in case of fault

Frequency division, factory set

P168\*\*\*\*/4\*: 1:1, 4:1,

Switchable

P168\*\*\*\*/8\*: 1:1, 8:1,

Switchable

Maximum duty cycle deviation output signal to input signal without frequency division

± 10 %

Duty cycle of output signal with frequency division independent

50 % ± 10 %

of input signal duty cycle

 $f < 1 Hz \pm 0.3 Hz$ 

Standstill detection Reference voltage generation for

 $U_{out} = 7.2 V$ 

standstill signaling

True zero speed

Response in the event of input

Immediate transmission with specified latency period

The output level follows the input level (valid for 1:1 transmission)

frequency jump

Direction of travel signal DOT (without SIL), P16840 only

 $\Delta \phi = \phi 2 - \phi 1$ ;  $\Delta \phi > 0 -> High$ ;  $\Delta \phi < 0 -> Low$ 

P16800 Knick > | 7

# Speed signal doubler

### **Specifications**

| Reaction to Input Signals |                |                                                                |                                                            |                                                            |                            |
|---------------------------|----------------|----------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------|
|                           |                | Input level                                                    | U <sub>OUT</sub> 1/2                                       | I <sub>OUT</sub> 1/2                                       | Switching output<br>SW 1/2 |
| Voltage Input             | U              | Low                                                            | Low                                                        | Low                                                        | Closed                     |
|                           |                | High                                                           | High                                                       | High                                                       | Closed                     |
|                           |                | Middle voltage                                                 | Low or high,<br>depending on<br>input level/<br>hysteresis | Low or high,<br>depending on<br>input level/<br>hysteresis | Closed                     |
|                           |                | f < 1 Hz<br>(with enabled<br>middle voltage<br>generation only | 7.2 V<br>)                                                 | Invalid setting                                            | Closed                     |
|                           |                | Open                                                           | Low                                                        | Low                                                        | Closed                     |
|                           | U <sub>S</sub> | 10 33.6 V                                                      | Dependent on input level/ hysteresis                       | Dependent on input level/ hysteresis                       | Closed                     |
|                           |                | < approx. 9.5 V                                                | Undefined                                                  | Undefined                                                  | Open                       |
| Current Input             | I              | Low                                                            | Low                                                        | Low                                                        | Closed                     |
|                           |                | High                                                           | High                                                       | High                                                       | Closed                     |
|                           |                | < Low                                                          | High                                                       | High                                                       | Open                       |
|                           |                | Open                                                           | High                                                       | High                                                       | Open                       |

Active inversion of the input signals via DIP switch: High and low levels are swapped.

The output signal evaluates middle voltage generation.

All input errors are also evaluated in the process.



## Specifications

| Power Supply                                                              |                                                                            |                                |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------|
| Input channel supply                                                      | From the respective output circuit,                                        | galvanically isolated          |
| Supply of the output channels                                             | V <sub>S</sub> : Output circuit                                            | U <sub>B</sub> : Output driver |
| Power supply V <sub>S</sub> ,<br>U <sub>B</sub> (rail applications)       | 24 V, SELV, PELV                                                           |                                |
| Power supply V <sub>s</sub> ,<br>U <sub>B</sub> (industrial applications) | 12 24 V, SELV, PELV                                                        |                                |
| Electrical safety                                                         | All connected current or voltage cir<br>Area I requirements according to E |                                |
| Overvoltage and undervoltage limits                                       | V <sub>S</sub> : 10 33.6 V DC                                              | U <sub>B</sub> : 10 33.6 V DC  |
| Interruption class                                                        | S1 according to EN 50155                                                   |                                |
| Switching class                                                           | C1 according to EN 50155                                                   |                                |
| Power consumption via V <sub>S</sub> per channel                          | Max. 600 mW                                                                |                                |
| Current via U <sub>B</sub> per channel                                    | Max. 5 mA + I <sub>OUT</sub>                                               | Max. 5 mA + $U_{OUT}/R_L$      |
| Maximum power conversion P <sub>Max</sub>                                 | < 2.2 W                                                                    | P1681****/**: < 1.1 W          |
| DC ripple factor                                                          | 5 % according to EN 50155                                                  |                                |
| Readiness for operation (after switching on the power supply)             | ≤ 50 ms                                                                    |                                |
| Inrush current at V <sub>S</sub> per channel                              | At $V_S$ = 24 V, $U_{OUT}$ at $R_L$ = 1 $k\Omega$                          | < 0.0002 A <sup>2</sup> per s  |
| Inrush current at $U_B$ per channel                                       | At $U_B$ = 24 V, $U_{OUT}$ at $R_L$ = 1 $k\Omega$                          | < 0.0001 A² per s              |
|                                                                           |                                                                            |                                |

P16800 Knick > | 9

# Speed signal doubler

### **Specifications**

| Isolation              |                                                           |                                  |                   |  |  |  |
|------------------------|-----------------------------------------------------------|----------------------------------|-------------------|--|--|--|
| Galvanic isolation     | Across input and output circuits                          | Across input and output circuits |                   |  |  |  |
|                        | Across channel 1 and channel 2 aco                        | cording to EN 5012               | 4, EN 61010-1, UL |  |  |  |
| Type test voltages     | Across input and output:                                  | 8.8 kV AC/5 s                    | 5 kV AC/1 min     |  |  |  |
|                        | Across channel 1 and channel 2:                           | 3.55 kV AC/5 s                   | 3 kV AC/1 min     |  |  |  |
| Routine test voltages  | Across input and output:                                  | 4.6 kV AC / 10 s                 | ;                 |  |  |  |
|                        | Across channel 1 and channel 2:                           | 1.9 kV AC / 10 s                 | j                 |  |  |  |
| Safety Function:       | Absence of Interaction, Input                             |                                  |                   |  |  |  |
| Safety level           | SIL 4                                                     |                                  |                   |  |  |  |
| FFR                    | < 2.0 · 10 <sup>-9</sup>                                  |                                  |                   |  |  |  |
| $U_{I}$ , $U_{S}$      | Input impedance $> 60 \text{ k}\Omega$ current from input |                                  |                   |  |  |  |
|                        | Current from input                                        | < ±100 µA                        |                   |  |  |  |
| I                      | U < 1 V                                                   |                                  |                   |  |  |  |
| Reinforced insulation  | between shield and the rest of                            | 50 V, OV IV, 400                 | 00 m, PD 2        |  |  |  |
| Isolation routine test | the signals of a channel                                  | 1.4 kV AC, dura                  | tion 60 s         |  |  |  |
| Safety Function:       | Signal transmission                                       |                                  |                   |  |  |  |
| Safety level           | SIL 2                                                     |                                  |                   |  |  |  |
| FFR                    | < 1.00 · 10 <sup>-7</sup>                                 |                                  |                   |  |  |  |
| Safety function        | Frequency-precise transmission                            | $f_{out} = f_{in} \pm 0.1 \%$    | of measured value |  |  |  |



#### **Specifications**

| Δm   | hian | t Co | nditi | nns  |
|------|------|------|-------|------|
| AIII | Dien | LUU  | HUILI | כווט |

Operating environment

Installation site according to

EN 50155

Pollution degree

Height class according to

EN 50125

Temperature class according to

EN 50125

Ambient temperature range:

Operation

Ambient temperature range: -40 ... 90 °C (-40 ... 194 °F)

Storage and transport

Temperature at enclosure

Relative humidity

Use in enclosed, non-forced-ventilated areas on rolling stock

**Enclosed control cabinet** 

PD 2

AX, reduced isolation data for altitudes of 2000 to 4000 m above MSL

TX

-40 ... 70 °C (-40 ... 158 °F)

OT4 / ST1 & ST 2 / H2.

Output, IP20

short-time 85 °C (185 °F)

Max. 95 °C (203 °F)

(operation, storage, transport)

Annual mean value ≤ 75 % Continuous operation 15 ... 75 % Continuously for 30 days a year 75 ... 95 % Occasionally on the other days 95 ... 100 %

#### **Further Data**

**Terminals** Push-in two-tier terminals, pluggable

Conductor cross-sections 0.2 ... 1.5 mm<sup>2</sup> AWG 24 ... 16 Stranded with ferrule or solid

Cable types Shielded cables

Degree of protection according to

EN 60529

Input, IP20

Mechanical load Vibration and shock Category 1, Class B according to EN 61373, IEC 61373 Tested by independent test

laboratory

**MTBF** > 2.6 · 106 h (383 FIT per channel)

Service life According to EN 50155 20 years, L4 according to EN 50155

Useful operating life According to EN 13849 20 years

Weight Approx. 170 g

**Knick >** | 11 P16800

# Speed signal doubler

#### **Standards and Directives**

The devices were developed in compliance with the following standards and directives

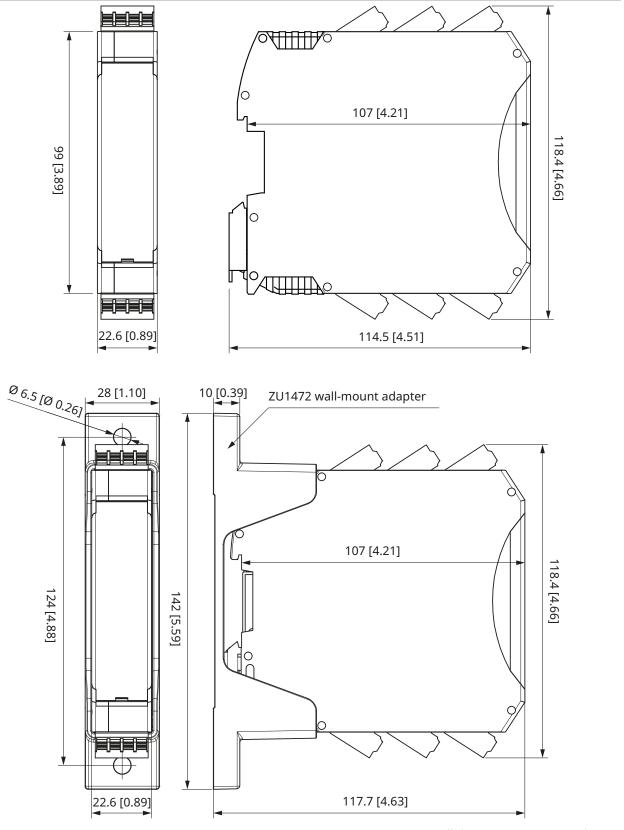
#### **Directives**

Directive 2014/30/EU (EMC)

Directive 2014/35/EU (Low voltage)

Directive 2011/65/EU (RoHS)

Directive 2012/19/EU (WEEE)


Regulation (EC) No. 1907/2006 (REACH)

### **Standards**

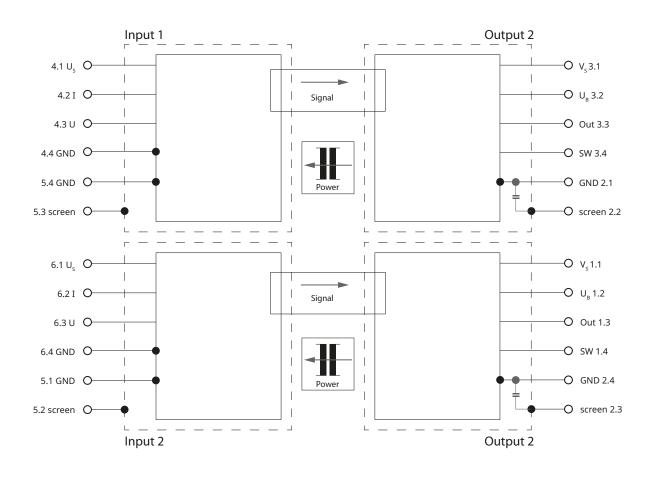
| Rail Applications                              | EN 50155, EN 50153                    |  |  |  |
|------------------------------------------------|---------------------------------------|--|--|--|
| Resistance to vibration and shock              | EN 61373, IEC 61373                   |  |  |  |
| Fire protection                                | EN 45545-1, EN 45545-2,<br>EN 45545-5 |  |  |  |
| EMC                                            | EN 50121-1, EN 50121-3-2              |  |  |  |
| Functional safety                              | EN 50129                              |  |  |  |
| Isolation requirements                         | EN 50124-1                            |  |  |  |
| Climate                                        | EN 50125-1                            |  |  |  |
| Industrial Applications                        | EN 61010-1                            |  |  |  |
| EMC                                            | EN IEC 61326-1                        |  |  |  |
| Isolation requirements                         | EN 61010-1, EN IEC 60664-1            |  |  |  |
| Restriction of Hazardous Substances/RoHS       | EN IEC 63000                          |  |  |  |
| Electrical safety and fire protection (Canada) | CAN/CSA-C22.2 No. 61010-1-12          |  |  |  |
| Electrical safety and fire protection (USA)    | UL 61010-1, UL File: E340287          |  |  |  |



### **Dimension Drawings**



All dimensions in mm [inches]


# Speed signal doubler

### **Terminal assignments**

| Termi | nal Designation | Input/output | Channel | Function                                                                                                  |
|-------|-----------------|--------------|---------|-----------------------------------------------------------------------------------------------------------|
| 1.1   | V <sub>S</sub>  | Output       | 2       | Supply voltage                                                                                            |
| 1.2   | $U_B$           | Output       | 2       | Supply voltage (output driver)                                                                            |
|       |                 |              |         | If terminal UB is open, the output driver is supplied via VS and an internal DC/DC converter.             |
| 1.3   | Out             | Output       | 2       | Output signal (current or voltage)                                                                        |
| 1.4   | SW              | Output       | 2       | Switching output, opens in the event of an error.                                                         |
| 2.1   | GND             | Output       | 1       | Ground (reference potential)                                                                              |
| 2.2   | Screen          | Output       | 1       | Shield                                                                                                    |
| 2.3   | Screen          | Output       | 2       | Shield                                                                                                    |
| 2.4   | GND             | Output       | 2       | Weight                                                                                                    |
| 3.1   | $V_S$           | Output       | 1       | Supply voltage                                                                                            |
| 3.2   | $U_B$           | Output       | 1       | Supply voltage (output driver)                                                                            |
|       |                 |              |         | If terminal UB is open, the output driver is supplied via VS and a DC/DC converter                        |
| 3.3   | Out             | Output       | 1       | Output signal (current or voltage)                                                                        |
|       |                 |              |         | For product version with DOT Function (P16840, direction-of-travel detection): result of phase comparison |
| 3.4   | SW              | Output       | 1       | Switching output, opens in the event of an error.                                                         |
| 4.1   | US              | Input        | 1       | Speed sensor supply voltage                                                                               |
| 4.2   | I               | Input        | 1       | Signal current from speed sensor                                                                          |
| 4.3   | U               | Input        | 1       | Signal voltage from speed sensor                                                                          |
| 4.4   | GND             | Input        | 1       | Speed sensor ground                                                                                       |
| 5.1   | GND             | Input        | 2       | Speed sensor ground                                                                                       |
| 5.2   | Screen          | Input        | 2       | Shield                                                                                                    |
| 5.3   | Screen          | Input        | 1       | Shield                                                                                                    |
| 5.4   | GND             | Input        | 1       | Speed sensor ground                                                                                       |
| 6.1   | US              | Input        | 2       | Speed sensor supply voltage                                                                               |
| 6.2   | I               | Input        | 2       | Signal current from speed sensor                                                                          |
| 6.3   | U               | Input        | 2       | Signal voltage from speed sensor                                                                          |
| 6.4   | GND             | Input        | 2       | Speed sensor ground                                                                                       |



### **Terminal Assignments and Block Diagram**



P16800 Knick > | 15