Bedienungsanleitung

Software Paraly SW 111 für PDA und PC

Knick

Elektronische Messgeräte GmbH & Co. KG Postfach 37 04 15 D-14134 Berlin

Telefon:+49 (0)30 - 801 91 - 0Telefax:+49 (0)30 - 801 91 - 200Internet:http://www.knick.deknick@knick.de

(6

Inhaltsverzeichnis

Hinweise	4
Sicherheitshinweis	4
Warenzeichen	4
Einführung	5
Grundlagen	9
Systemvoraussetzungen	9
Softwareinstallation PDA	9
Softwareinstallation PC	9
Hoch- oder Querformat (nur PDA)	10
Startbildschirm	12
Konfigurationsmodus (Config Mode)	15
Tab Config - Auswahlfelder	. 16
Tab Config - RTD 2-wire / RTD Difference / Resistor 2-wire	.17
Tab Config - RTD (eigene Meßfühler)	18
Tab Config - Thermocouple	19
Tab Config - Voltage und Potentiometer	. 22
Tab Config - Dehnungsmeßstreifen (Strain gage)	23
Tab Measure - Meiswerte / Feniermeidungen	.26
Tab Ident Meßstellenbezeisbeung / Paßwertschutz	. 27
Tab Ident - Transmittertyn / Seriennummer / Firmware	20
Offline Mede	20
Offinemodus (Offine Mode)	30
Kontrolimodus (Monitor Mode)	31
Tab Moasuro / Idont	27
	52
Stutzstellen (Sampling Points)	34
VVdS SITIU Stutzstellen und Wozu dienen sie? Übersicht – Stützstellen zur Schwellwertsteuerung	25
obersicht - Stutzstellen zur Schweinwertsteuerung	55
Polynome	3/
Polypomkooffizionton in der Software	20
Polynomkoeffizienten - Füllstandmessung - Zusammenfassung	/1
Ashang	43
P 32000: Bediepung über IrDA-Schnittstelle	42
P 32000: Fehlersignalisierung am Gerät	
P 32000. Fingangsbeschaltung	
Erweiterte Eingangsbeschaltung über Paraly	
Herleitung der normierten Formel zur Füllhöhenbestimmung eines Kugeltanks	.45
Mögliche Fehlermeldungen beim IrDA Verbindungsaufbau	46

Sicherheitshinweis

Für die Inbetriebnahme des Universalmeßumformers beachten Sie unbedingt die Sicherheitshinweise der dem Produkt beiliegenden Bedienungsanleitung!

Warenzeichen

In dieser Bedienungsanleitung werden nachfolgend aufgeführte eingetragene Warenzeichen ohne nochmalige spezielle Auszeichnung verwendet

Paraly[®] PolyTrans[®] ThermoTrans[®] SensoTrans[®] eingetragene Warenzeichen der Knick GmbH & Co. KG, Deutschland

Windows® eingetragenes Warenzeichen der Microsoft Corp., USA

Die Universalmeßumformer (Transmitter) PolyTrans P 32000 bieten Anschlußmöglichkeiten für alle gängigen Thermoelemente, Widerstandsthermometer, DMS-Vollbrücken, Widerstände und Potentiometer.

Bei Widerstandsthermometern und Widerständen wird die Anschlußkonfiguration 2-, 3- oder 4-Leiterschaltung beim Gerätestart automatisch erkannt.

Hinweis: Änderungen der Anschlußart von 2-Leiter nach 3-Leiter (oder 4-Leiter) bzw. von 3-Leiter nach 4-Leiter werden nur bei erneutem Gerätestart erkannt (Ein-/Ausschalten der Hilfsenergie). Das Ausgangssignal ist einstellbar auf 0 / 4 ... 20 mA oder 0 ... 5 / 10 V. Die Umschaltung der Meßbereiche erfolgt kalibriert über DIP- und Drehcodierschalter. (siehe hierzu Bedienungsanleitung Universal-Meßumformer PolyTrans P 32000).

Diese Einstellungen lassen sich auch mit Hilfe der benutzerfreundlichen, menügeführten Kommunikations-Software **Paraly SW111** unter Einsatz eines PDA oder PC mit Infrarot-Schnittstelle realisieren. Sie können also per "Infrarotfernbedienung" sicher und bequem die Transmittereinstellungen ohne Demontage anpassen. Neben den Grundeinstellungen, wie sie mit den DIP- und Drehkodierschaltern möglich sind, eröffnet die Software eine Reihe weitergehender Möglichkeiten – zum Beispiel:

- den Zugriff auf zusätzliche Sensortypen
- die Eingabe kundenspezifischer Übertragungskurven
- das Auslesen der Anschlußkonfiguration
- den Einsatz umfangreicher Diagnosefunktionen
- die Parametrierung, Dokumentation und Wartung

Überdies kann mit Hilfe der Simulationsfunktion der Ausgangsstrom bzw. die Ausgangsspannung unabhängig vom Eingangswert vorgegeben werden - bei Anlageninbetriebnahme bzw. –revision.

Einführung

Paraly SW 111 wird zur Konfiguration der Meßumformer PolyTrans P 32000, ThermoTrans P 32100, SensoTrans DMS P 32200 und SensoTrans R P 32300 verwendet. Unterstützt werden jeweils nur die gerätespezifischen Sensortypen.

Systemvoraussetzungen Softwareinstallation Infrarotkommunikation Softwarestart

Systemvoraussetzungen

- PDA bzw. PC mit Infrarot-Schnittstelle
- Betriebssystem PDA: Windows Mobile 2003 oder höher
- Betriebssystem PC: Windows XP

Softwareinstallation PDA

Beachten Sie bitte die Hinweise zur Softwareinstallation in der Bedienungsanleitung Ihres PDA.

Softwareinstallation PC

Kopieren Sie den Ordner mit der Software auf Ihren PC und starten Sie dort die Datei **Paraly_SW111.exe**.

Hoch- oder Querformat (nur PDA)

Kniek)	•"' •\`
Paraly SW 111	
 PolyTrans P32000 ThermoTrans P3211 SensoTrans DMS P3 SensoTrans R P323 For Config Mode: Set all DIP switches 	00 32200 00
all rotary switches	to 0.
Config Mode	Monitor Mode
Offline Mode	Exit
Info	?

Da die sich die Infrarotschnittstellen bei den verschiedenen PDAs an unterschiedlichen Stellen befinden, kann es aus ergonomischen Gründen sinnvoll sein, das Display von Hochauf Querformat umzuschalten. Wie das geht, entnehmen Sie bitte den Herstellerangaben Ihres Gerätes.

Wichtig ist, daß diese Umschaltung geschieht, **bevor** das Programm Paraly SW111 gestartet wird. Die nachfolgenden Erläuterungen zur Bedienung der Software werden im Hochformat dargestellt.

Die Funktionen der Software sind in beiden Darstellungsformen identisch. Die Anordnung der Schaltflächen bzw. Eingabefelder kann unterschiedlich sein.

Bitte beachten Sie!

Zur Kommunikation zwischen PDA/PC und Transmitter mit Hilfe der Infra-

rotdatenübertragung muß die Infrarotschnittstelle des Transmitters, mit dem der Datenaustausch stattfinden soll, mittels frontseitigem Taster eingeschaltet sein. Die Betätigung erfolgt beispielsweise mit einem Schraubendreher (Klingenbreite max. 2,5 mm), der sicher gegen die an den Eingang gelegte Spannung isoliert ist. In der Frontklappe

ist ein entsprechende Öffnung vorgesehen.

Die aktivierte IR-Schnittstelle wird durch eine blinkende gelbe LED an der Gerätefront signalisiert. Der Verbindungsaufbau muß innerhalb von 60 Sekunden erfolgen. Eine Zeitüberschreitung (Timeout) bewirkt die Deaktivierung der IR-Schnittstelle, die gelbe LED ist inaktiv. Wird eine bereits bestehende IR-Verbindung unterbrochen, beträgt das Timeout 10 Sekunden. Eine Kommunikation mit mehreren Transmittern gleichzeitig ist nicht vorgesehen.

Wichtiger Hinweis: Der Transmitter muß mit Hilfsenergie versorgt sein.

Zudem müssen Sie sicherstellen, daß zwischen den Infrarot-Schnittstellen eine direkte Sichtverbindung besteht.

Der Abstand zwischen beiden Geräten hängt u.a. von der Leistungsfähigkeit der Infrarotschnittstelle ab. Als optimalen Abstand empfehlen wir 20 bis 40 cm.

Startbildschirm

Im Konfigurationsmodus

(Config Mode) können Sie zahlreiche Einstellungen am Transmitter im laufenden Betrieb vornehmen. Hierbei sind wesentlich mehr Einstellungen verfügbar, als dies mit den DIP-Schaltern direkt am Transmitter möglich ist. Voraussetzung ist, daß sich die Geräte "sehen" können und die Infrarotschnittstelle des gewünschten Transmitters aktiviert worden ist. Weiterhin müssen alle DIP-Schalter dieses Transmitters auf 1 (ON) stehen und die Drehcodierschalter auf Null. Die Konfigurationsdaten können gespeichert werden und stehen zur weiteren Bearbeitung auch im Offlinemodus zur Verfügung.

Der **Kontrollmodus (Monitor Mode)** ist ein reiner Lesemodus. Er bietet Zugriff auf die Konfigurations- und die aktuellen Meßdaten und ggf. Fehlermeldungen des Transmitters. Die Infrarotschnittstelle am Transmitter muß aktiviert sein. Die DIP- und Drehcodierschalter brauchen, anders als im Config-Mode, nicht verändert zu werden. Das gibt Ihnen die Möglichkeit, Konfigurationen zu erfassen, die mit Hilfe der DIP-Schalter direkt am Transmitter eingestellt wurden. Die erfaßten Konfigurationsdaten können in Dateien gespeichert werden und stehen dann in den anderen Modi zur weiteren Bearbeitung zu Verfügung. Veränderungen an den Einstellungen des Transmitters sind in diesem Modus nicht möglich.

Der **Offlinemodus (Offline Mode)** gestattet Ihnen, auf gespeicherte Konfigurationsdaten zurückzugreifen und diese zu bearbeiten oder auch komplett neue Konfigurationen zu erstellen. Der Vorteil ist, daß Sie Konfigurationen "auf Vorrat" produzieren können, ohne direkten Zugriff auf den Transmitter haben zu müssen. Die gespeicherten Daten werden zu einem beliebigen Zeitpunkt aus dem **Konfigurationsmodus (Config Mode)** zum Transmitter gesendet.

Bedienung

Konfigurationsmodus Offlinemodus Kontrollmodus Simulationsmodus

Tab Measure (1):

Anzeige der Meßdaten und Zugriff auf zusätzliche Gerätedaten und Fehlermeldungen (siehe Seite 26) Tab **Simulation (2)**: Hier haben Sie die Möglichkeit, Ihre Anlageninstallation zu testen (siehe Seite 27).

Tab **Ident (3)**:

Abruf und Vergabe der Meßstellenbezeichnung sowie Info über die Anzahl der erfolgten Konfigurationen (siehe Seite 28). **Achtung!** Die folgenden Einstellungen ändern die Funktion des Transmitters. Sie werden wirksam, wenn sie auf das Gerät durch **Send** Data to Device übertragen werden. Stellen Sie daher vor der Übertragung einer neuen Konfiguration in den Transmitter sicher, daß dadurch keine Gefahr für die Anlage entstehen kann.

Nebenstehende Abbildung zeigt ein Beispiel für die Registerkarte (Tab) Config. Das Aussehen bei Ihnen kann in Abhängigkeit von Transmitter und Sensor hiervon abweichen. Die folgenden Felder und Schaltflächen sind jedoch immer vorhanden.

Sensor - Art des Sensors **Start/End** - Einstellung des Meßbereiches. Die Maßeinheit paßt sich automatisch der Sensorauswahl an.

Set actual meas value to -

Übernahme des aktuellen Meßwertes als Start- oder Endwert des Meßbereichs **Output** - Einstellung Ausgangssignaltyp

Characteristic curve -

Übertragungskennlinie anpassen (Einzelheiten siehe Seite 33ff)

Save/Load Data to/from file

- Sichern (Save) der aktuellen Konfiguration als Datei / Öffnen (Load) einer Konfigurationsdatei

Send/Load Data to/from device

- Senden (Send) der Konfiguration zum Transmitter / Abrufen (Load) der Konfiguration vom Transmitter

Tab Config - Auswahlfelder

Klicken Sie auf ✓ und wählen Sie im Feld Sensor die Art des Sensors (hier RTD) Feld Connection Anschluß des Sensors Feld Sensortype den Typ des Sensors (hier PT100)

Je nach Sensorauswahl können sich weitere Einstellmöglichkeiten ergeben. Diese werden nachfolgend erläutert. Die komplette Auflistung der Auswahlmöglichkeiten zeigt die folgende Tabelle.

Sensor	Anschluß des Sensors	Sensortyp
RTD	2-Leiter, 3-Leiter, 4-Leiter, Differenz	Pt100, Pt1000; Ni100, Pt XXX, NI XXX
Thermocouple	Einzeln, Summe, Differenz	B, E, J, K, L, N, R, S, T, U, W3Re/W25Re, W5Re/W26Re
Resistor	2-Leiter, 3-Leiter, 4-Leiter	
Potentiometer	3-Leiter, 4-Leiter	
Voltage		
Strain gage	Excitation: internal, external	

Bei Widerstandsthermometern und Widerständen wird mit der Auswahl der Anschlußkonfiguration 2-, 3- oder 4-Leiterschaltung die automatische Auswahl beim Gerätestart deaktiviert. Eine abweichende Sensorbeschaltung (z. B. infolge eine Verdrahtungsfehlers) wird mit der Fehlermeldung "Anschlußerkennung" signalisiert.

Geben Sie die Werte für Meßbereichsanfang (Start) und Meßbereichsendwert (End) entsprechend Ihrer Meßstellenkonfiguration und des gewünschten Meßbereichs ein. Sie können auch den aktuellen Meßwert als Start- bzw. Endwert übernehmen. Betätigen Sie dazu im Feld "Set actual meas to" die Schaltfläche Start bzw. End.

Tab Config - RTD 2-wire / RTD Difference / Resistor 2-wire

🎢 Paraly_SW111 🗱 📢
Config Measure Simulation Ident X
Sensor RTD type
RTD Pt100
Connection
2-wire 🔻
Line resistance
Ohm Measure
Start End
Set actual meas value to
Start End
Output Characteristic curve
Data to / from file Data to / from device
Save Load Send Load
>>> Config ? 🔤 🖍

Bei Auswahl von **RTD** mit der Anschlußbelegung 2-Leiter **(2-wire)** (gilt auch bei "Resistor 2-wire" und "RTD Difference") geben Sie für "Line resistance" einen schon bekannten Wert ein (Wertebereich: 0,0 bis 100,0 Ohm) oder Sie messen den Leitungswiderstand durch Betätigen der Schaltfläche **Measure**.

Config Measure Simulation Ident X
Sensor RTD type Pt100
Conr
Line
Set actual meas value to Start End
Output Characteristic curve
Data to / from file Save Load Data to / from device Send Load
• Config ?

Sie werden aufgefordert, den Sensor kurzzuschließen. Nach Bestätigung der Meldung mit **OK** wird der Leitungswiderstand vom Transmitter gemessen.

Mit **Send Data to Device** wird der 2-Leiter-Abgleich durchgeführt.

Tab Config - RTD (weitere Meßfühler)

🎢 Paraly_SW111 🗱 📢
Config Measure Simulation Ident X
Sensor RTD type RTD Image: Constraint of the sensor
Connection Basic value at 0°C 2-wire ▼ 25 Ohm
Line resistance
Start End
Set actual meas value to Start End
Output Characteristic curve
Data to / from file Data to / from device Save Load Send Load
>>> Config ?

Die Auswahl von

Pt xxx bzw. Ni xxx

im Feld

RTD type

gibt Ihnen die Möglichkeit, Meßfühler mit Nennwerten bei 0 °C einzusetzen, die nicht in der Auswahlliste stehen. Für ein Pt 500 beispielsweise müßten Sie unter

Basic value at 0°C

den Wert 500 (Ohm) einsetzen.

Tab Config - Thermocouple

Internal
External
User Set actual meas value to ¬

Single	•	
Cold junction	Line resistance	
External	▼ 🗧 25 Oh	Measure
Start	End	
(÷) 0	€100 ℃	

0	ß
Please short circuit the sensor!	

Bei Auswahl von Thermocouple im Feld Sensor:

Wählen Sie zunächst im Feld **TC type** den entsprechenden TC Typ aus, hier beispielsweise TC Typ J.

Wählen Sie unter **Cold junction** den Typ der Vergleichsstellenkompensation der Ihrer Gerätekonfiguration entspricht (hier Internal).

Zur Auswahl stehen internal, external und benutzerdefiniert (user).

Bei der Auswahl von **External** geben Sie für "Line resistance" einen schon bekannten Wert des Leitungswiderstandes zum externen Pt100 ein (Wertebereich: 0,0 bis 100,0 Ohm) oder Sie messen den Leitungswiderstand durch Betätigen der Schaltfläche **Measure**.

Sie werden aufgefordert, den Sensor kurzzuschließen. Nach Bestätigung der Meldung mit **OK** wird der Leitungswiderstand vom Transmitter gemessen.

Mit **Send Data to Device** wird der 2-Leiter-Abgleich durchgeführt.

Tab Config - Thermocouple

Paraly_SW111 #: €€ X Config Measure Simulation Ident Sensor TC type Thermocouple Type J • Connection Working Point Difference 25 **⊡**⊂ End Start 0 (=) 100 1 K Set actual meas value to End Start Output Characteristic curve 0 - 20 mA 🔫 Linear Data to / from file Data to / from device Save Load Send Load **>>**4 Config ?

Bei Auswahl von benutzerderfiniert (User)

geben Sie die Temperatur der Vergleichsstelle im Feld **Temperature** ein.

Bei Auswahl von Difference im Feld Connection:

Wählen Sie auch hier zunächst im Feld **TC types** den entsprechenden TC Typ aus.

Die Differenzschaltung von Thermoelementen gleichen Typs zur Bildung der Temperaturdifferenz T1 - T2 erfordert zur Berechnung die Angabe der Arbeitstemperatur (Working Point):

 $T_A = (T_1 - T_2) : 2 + T_2 [^{\circ}C]$

Geben Sie die Arbeitstemperatur des TC ins Feld **Working Point** ein.

Tab Config - Thermocouple

Hinweis:

TC-Sum unterstützt die Temperaturmessung mit einer Reihenschaltung aus mehreren Thermoelementen. Diese Anordnung vergrößert die entstehende Thermospannung, so daß auch sehr kleine Temperaturunterschiede (zur Vergleichsstelle) noch sicher gemessen werden können.

Bei Auswahl von **Sum** im Feld **Connection**:

Auch hier zunächst im Feld **TC type** den entsprechenden TC Typ auswählen - dann weitere Einstellungen vornehmen.

Wählen Sie unter

Cold junction die Art der Vergleichsstellenkompensation. Zur Auswahl stehen external und benutzerdefiniert (User). Geben Sie die Anzahl der angeschlossenen Thermoelemente ins Feld **Number of TCs** ein (maximal 10).

Bei Auswahl von **benutzerdefiniert** (**user**) gehen Sie wie vorstehend beschrieben vor. Zusatzlich können Sie unter

Temperature in °C

die Vergleichsstellentemperatur eingeben.

Tab Config - Voltage und Potentiometer

🎢 Paraly_SW111 🗱 📢
Config Measure Simulation Ident X
Sensor
Voltage 🗸
Start End (a) (b) 100 mV Set actual meas value to Start End
Output Characteristic curve
0 - 20 mA 🖌 Linear 👻
Data to / from file Data to / from device
Save Load Send Load
• Config ? 🔤 🖍

Bei Auswahl von Voltage im Feld Sensor:

Geben Sie die Werte entsprechend des gewünschten Meßbereichs ein.

🎢 Paraly_SW111 🗱 📢
Config Measure Simulation Ident X
Sensor Potentiometer
Connection 3-wire
Start End 0 0100 % Set actual meas value to Start End
Output Characteristic curve
Data to / from file Data to / from device Save Load Send Load
>>> (Config ? (

Bei Auswahl von Potentiometer im Feld Sensor

im Feid **Sensor**

wählen Sie im Feld **Connection** den entsprechenden Anschluß des Sensors aus.

Anschließend geben Sie die Werte entsprechend des gewünschten Meßbereichs ein.

Tab Config - Dehnungsmeßstreifen (Strain gage)

🎢 Paraly_SW111 🗱 📢
Config Measure Simulation Ident X
Sensor
Strain gage 🗸
Excitation
Internal 🗸
Internal
External
Start End D D D V/V Set actual meas value to Start End CAL
Output Characteristic curve
Data to / from file Data to / from device
Save Load Send Load
•)) (Config ? 🔤 🗖

Mit der Auswahl von

Strain gage im Feld Sensor und internal oder external im Feld Excitation

haben Sie die Möglichkeit, DMS-Meßbrücken mit interner Speisung (4-Leiteranschluß) bzw. mit externer Speisung (6-Leiteranschluß) zu betreiben (siehe Anhang P 32000: Eingangsbeschaltung).

Geben Sie alle weiteren Werte entsprechend des gewünschten Meßbereichs ein.

Hinweis:

Mit der Funktion "Set actual meas value to" kann die Meßanordung bestehend aus Meßumformer und Dehnungsmeßstreifen justiert werden. Der aktuelle Meßwert wird als Nullpunkt (Tara) oder Meßbereichsendwert gespeichert. Betätigen Sie dazu die Schaltfläche Start bzw. End.

Mit Hilfe von **Cal** kann eine 2-Punktjustierung mit einer bekannten Last oder Kraft durchgeführt werden. Siehe folgende Seite.

🏄 Paraly_SW111 🗱 📢
Config Measure Simulation Ident X
Sensor
Strain gage 🗸
Excitation
Internal
External
Start End
Set actual meas value to
Start End CAL
Output Characteristic curve
0 - 20 mA V Linear
Data to / from file Data to / from device
Save Load Send Load
Config ?

Das Cal-Menü gestattet, eine 2-Punktjustierung mit einer bekannten Last oder Kraft durchzuführen. Die Ermittlung von Nullpunkt und Empfindlichkeit kann an beliebigen Punkten auf der Kennlinie durchgeführt werden.

Beispiel:

Wägezelle (Druckbelastung)

- 1. Sensor entlasten.
- 2. Schaltfläche Meas A betätigen.
- Prozentualen Wert innerhalb der gewünschten Meßspanne eingeben, der dieser Sensorlast entsprechen soll; z.B. 0%, wenn der unbelastete Sensor den Meßbereichsanfang angeben soll.
- 4. Sensor definiert belasten.
- 5. Schaltfläche Meas B betätigen.
- Prozentualen Wert innerhalb der gewünschten Meßspanne eingeben, der dieser Sensorlast entsprechen soll; z.B. 100%, wenn diese Belastung das Meßbereichsende definieren soll.
- 7. Kalibrierung mit OK bestätigen.

Die Daten werden gespeichert und Sie kehren zum Config-Fenster zurück.

Mit Hilfe von

Send unter **Data to / from device** übertragen Sie die Daten zum Transmitter.

Tab Config - Daten speichern / laden / senden

🎢 Paraly_SW111 🗱 📢
Config Measure Simulation Ident X
Sensor RTD type
RTD V Pt100 V
Connection
2-wire
Line resistance
Start End
Set actual meas value to
Start End
Output Characteristic curve
0 - 20 mA 👻 Linear 💌
Data to / from file Data to / from device
Save Load Send Load
j , , , , , , , , , , , , , , , , , , ,

Mit Hilfe von **Save** unter **Data to / from file**

speichern Sie die Konfiguration als Datei, ohne diese an den Transmitter zu senden. Die Software generiert einen Vorschlag für den Dateinamen, der sich aus Seriennummer und Bestellbezeichnung (im Offline Mode nur Bestellbezeichnung) zusammensetzt. Der Dateiname kann nach Bedarf geändert werden. So kann z.B. kann die TAG-Nummer der Meßstelle verwendet werden. Als Dateiformat ist .cfg festgelegt.

Load öffnet bereits gespeicherte Konfigurationsdateien.

Mit Hilfe von **Send** unter **Data to / from device** übertragen Sie die Daten zum Transmitter. **Load** ruft die aktuellen Konfigurationsdaten vom Transmitter ab.

Tab Measure - Meßwerte / Fehlermeldungen

🎥 Pa	araly_SW111 🗱 📢	
Config	Measure Simulation Ident	Х
Measu	urement value	
0.1	1 K 🗸	
Outpu 0.03	It value Output Load 3 mA 0.28 V]
Device	temperature 22	

Wenn Sie den Tab **Measure**

aktivieren, sehen Sie neben dem aktuellen Meßwert **(Measurement value)** weitere Daten über den momentanen Status des Transmitters.

🎥 Paraly_SW111 🗱 📢
Config Measure Simulation Ident X
Measurement value 1103.19
Output value Output Load 21.00 mA 13.52 V
Device temperature 23.92 [℃] ▼
Error
Sensor open
Config ?

Falls die rote LED an der Front des Transmittergehäuses einen Fehler signalisiert (Anzahl der Blinkimpulse korrespondiert mit der Fehlernummer - Tabelle der Fehlermeldungen siehe Anhang),

sehen Sie unter Tab **Measure**

die konkrete Fehlerbezeichnung im Feld Error. Gleichzeitig weist die rote Markierung des Meßwertes auf einen Fehler hin. **Der angezeigte Meßwert ist ungültig.**

Hinweis:

Mit **Reset safe state** können selbsthaltende Fehlermeldungen (siehe Anhang Fehlersignalisierung) zurückgesetzt werden. Voraussetzung ist, daß die Fehlerursache behoben wurde.

Tab Simulation

Die Simulationsfunktion gibt Ihnen die Möglichkeit, die Konfiguration Ihrer Anlage zu testen, ohne daß Sie Änderungen an den Transmittereinstellungen vornehmen müssen.

Achtung! Die Simulation unterbricht die Meßfunktion des Gerätes! Stellen Sie vor dem Start der Simulation sicher, daß kein gefährlicher Zustand in der Anlage entstehen kann. Die Simulationsfunktion wird mit Start aktiviert.

Die aktive Simulationsfunktion wird am Transmitter durch die frontseitige rote LED angezeigt (leuchtet dauernd). Der Ausgangstrom bzw. die Ausgangsspannung kann über den Schieberegler (blauer Balken) oder über das Eingabefeld eingestellt werden, und zwar unabhängig vom aktuellen Eingangssignal. Über "Simulate error" wird ein Fehlersignal am Ausgang generiert, 21 mA bzw. 10,5 V (5,25 V).

Mit Stop beenden Sie die Simulation. Der Transmitter nimmt seine Meßfunktion wieder auf.

Wenn Sie den Tab Simulation verlassen, wird die Simulation ebenfalls beendet.

Tab Ident - Meßstellenbezeichnung / Paßwortschutz

🎥 Paraly_SW111 🗱 📢
Config Measure Simulation Ident X
TAG XXX Send
Password Secure mode O000 Send
Transmitter type STT1
Serialnumber SW Version 4294967295 1.24.2
Config revision counter
Paraly_SW111 In the second

TAG

Dem Transmitter kann eine Meßstellenbezeichnung (max. 10-stellig) zugeordnet werden. Geben Sie dazu im Feld **TAG** die gewünschte Bezeichnung ein. **SEND** TAG überträgt die gewählte Bezeichnung zum Transmitter.

Secure mode

Der Zugriff auf den Konfigurationsmodus kann durch einen individuell einstellbaren Zugriffscode (Paßwort) geregelt werden. Eine unbefugte Veränderung der Geräteeinstellungen kann damit verhindert werden. Aktivieren Sie **Secure mode** und geben Sie im Feld **Password** das gewünschte Paßwort (max. 4-stellig) ein.

Mit **Send** Pass übertragen Sie es zum Transmitter. Beim nächsten Start des Konfigurationsmodus werden Sie aufgefordert, dieses Paßwort einzugeben.

Achtung! Bei Verlust des Paßwortes ist der Konfigurationsmodus gesperrt. Nehmen Sie bitte Kontakt zum Kundendienst auf.

Hinweis: Der Schreibzugriff auf die eingestellte Konfiguration kann auch über eine Schaltereinstellung verhindert werden. Die DIP-Schalter des Transmitters müssen dazu alle auf off und die Drehschalter auf 0 stehen (Read only mode).

Tab Ident - Transmittertyp / Seriennummer / Firmware

🎢 Paraly_SW111 🗱 📢
Config Measure Simulation Ident X
TAG XXX Send
Password
Secure mode Send
Transmitter type
P32000
Serialnumber SW Version 4294967295 1.24.2
Config revision counter
• Config ? 🔤 •

Im dritten Abschnitt enthält die Registerkarte "Ident" Informationen zum Transmitter-Typ **(Transmitter type)**, zur Seriennummer **(Serial number)** und zur Softwareversion der Firmware **(SW version)** des Transmitters.

Der Config revision counter

zeigt die Anzahl der bisher über die Infrarot-Schnittstelle durchgeführten Konfigurationen. Eine Änderung der Meßumformer-Konfiguration erhöht den Revision Counter um 1 (Auslieferzustand: Revision counter = 0).

Durch DIP-Schalter erfolgte Änderungen werden nicht erfaßt.

Offlinemodus (Offline Mode)

🎥 Paraly_SW111	_ #* ◀€	
Paraly SW 111	Knick	>
Choose transmitter typ R32000, PolyTrans	e	
P32100_ThermoTrans P32200_SensoTrans_I P32200_SensoTrans_I	DMS R	
Ok	Cancel	
		∞ ^

Nach dem Start des Offlinemodus werden Sie aufgefordert, den Typ des Transmitters auszuwählen, für den die nachfolgende Konfiguration gedacht ist.

Zur Auswahl stehen: P32000 PolyTrans P32100 ThermoTrans P32200 SensoTrans DMS P32300 SensoTrans R

Die Typenangabe befindet sich auf dem Transmittergehäuse.

🏄 Paraly_SW111 🗱 📢
Config Measure Simulation Ident X
Sensor RTD type RTD Connection RTD
4-wire 👻
Start End 0 0 100 °C - Set actual meas value to – Start End
Output Characteristic curve
Data to / from file Save Load Data to / from device Send Load
) Offline ?

Die Erläuterungen über die Konfiguration auf den Seiten 15 bis 25 gelten auch für den Offlinemodus. Die Möglichkeit, Daten mit dem Transmitter auszutauschen, besteht nicht. Die entsprechenden Schaltflächen sind deaktiviert oder bei Aufruf der weiteren Tabs erhalten Sie einen entsprechen Hinweis.

Der Offlinemodus erlaubt Ihnen, Konfigurationen zu erstellen und zu verändern, ohne daß Sie, wie im Konfigurationsmodus nötig, unmittelbar eine Verbindung mit dem Transmitter aufbauen müssen. Sie können also bequem am Schreibtisch die Daten eingeben und zu einem späteren Zeitpunkt zum Transmitter senden.

Kontrollmodus (Monitor Mode)

Tab Config / Measure

🎢 Paraly_SW111 🗱 📢
Config Measure Simulation Ident X
Sensor RTD type RTD TD RTD Pt100 Connection
4-wire
Start End € 0 € 100 ℃ Set actual meas value to Start End
Output Characteristic curve
Data to / from file Save Load Send Load
Monitor ?

Der Kontrollmodus ermöglicht es, schnell auf die Transmitterdaten zuzugreifen. Hierzu ist nur die Infrarotschnittstelle des gewünschten Transmitters über den frontseitigen Taster zu aktivieren. Eine Änderung der parametrierten Einstellungen ist in diesem Modus nicht möglich, so daß eine versehentliche Veränderung ausgeschlossen ist.

Mit **Save** speichern Sie die Konfigurationsdaten als Datei, **Load** ruft die aktuellen Konfigurationsdaten vom Transmitter ab.

Interessant ist der Monitor Mode im Zusammenhang mit der Fehlersignalisierung, um schnell Klarheit über die Ursachen zu erhalten.

Abruf erfolgt über den Tab Measure.

	•••• ••
Config Measure Simu	lation Ident X
Measurement value	
1103.19	°C ▼
Output value	Output Load
0.00 mA	0.05
Device temperature 24.12 [℃] ▼	
Error	
Sensor open	
Monitor	?

Darahy SW111

Tab Measure / Ident

🎢 Paraly_SW111 🗱 ◀<
Config Measure Simulation Ident X
Measurement value 0.11 K
Output value Load 0.03 mA 0.28 V
Device temperature 23.92 °C
Error No Error detected
Monitor ?

Die aktuellen Meßwerte lassen sich über den Tab **Measure** aufrufen.

🎥 Paraly_SW111 📰 📢
Config Measure Simulation Ident X
TAG ABCDEFGHIJ Send
Password Secure mode **** Send
Transmitter type P32000
SerialnumberSW Version42949672951.24.2
Config revision counter
CCC Monitor

Mit Hilfe des Tabs **Ident** erhalten Sie u.a. Information über die Meßstellenbezeichnung, Typ des Transmitter und dessen Softwareversion.

Übertragungskennlinie anpassen

Stützstellen Polynome

Was sind Stützstellen und wozu dienen sie?

Stützstellen sind Wertepaare, die für eine einfache Anpassung der Übertragungsfunktion herangezogen werden können. Die Werteeingabe erfolgt bezogen auf den konfigurierten Meßbereich, der normiert auf den Bereich 0 bis 1 dargestellt wird.

Interessant ist die Nutzung der Stützstellenfunktion als Schwellwertfunktion zur Auslösung von Schaltvorgängen:

Das nachfolgende Beispiel soll dies verdeutlichen:

Betrachtet wird die Messung mittels eines PT100-Sensors im Bereich von 0°C bis 100°C mit einer Schwellwertfunktion bei 60°C für einen Sprung am Ausgang des Transmitters von 0 auf 10 V.

Stützstellen (Sampling Points)

Übersicht - Stützstellen zur Schwellwertsteuerung

Meßwert in °C	nach den y SW111	Auf Start und Endwert angepaßt, auf 1 normiert	Auf Stütz- stellen angepaßt, auf 1 normiert	Meßwert des Sensors modifiziert (für IRDA- Ausgabe) in °C	Ausgangswert in V
0	ter aral	0	0	0	0
10	e P	0,1	0	0	0
20	nsr var	0,2	0	0	0
30	Tra	0,3	0	0	0
40	, s i	0,4	0	0	0
50	dei	0,5	0	0	0
60	sun	0,6	1	100	10
70	in a	0,7	1	100	10
80	ear abe	0,8	1	100	10
90	ert	0,9	1	100	10
100	\geq	1	1	100	10

Die Tabelle zeigt einen Sprung des Ausgangswertes bei der Temperatur 60°C. Folgende Stützstellen lösen diesen Vorgang aus.

Stützstellen						
х	у					
0	0					
0,599	0					
0,6	1					
0,61	1					
1	1					

Die folgenden Seiten zeigen, wie Sie den Transmitter mit Hilfe der Software Paraly SW111 entsprechend programmieren.

Stützstellen (Sampling Points)

Maraly_SW111	# ₩
Config Measure Simulation Sensor RTD Connection 4-wire	n Ident X RTD type Pt100
Start End	°C
Output Characteristic	curve
Data to / from file Save Load	Data to / from device Send Load
Config	?

Im Konfigurationsfenster wählen Sie die ihrer Installation gemäßen Werte für **Sensor, Connection** und **Output**. Setzen Sie die Werte für **Start** und **Ende**. Im diesem Beispiel sind dies 0°C und 100°C. Wählen Sie unter **Characteristic curve**

Sampling points und betätigen Sie dann die Schaltfläche **Param.**

!!	Paraly_SW111_	# ★
x1 x2 x3 x4 x5	 € 0.000000 € 0,599 € 0,6 € 0,61 € 1 	y1 ⊕ 0.000000 y2 ⊕ 0 y3 ⊕ 1 y4 ⊕ 1 y5 ⊕ 1
	Please enter th Ok	ne sample points.

Geben Sie hier die Daten für die Stützstellen entsprechend der Tabelle auf Seite 35 ein.

Mit **OK** übernehmen Sie die Daten. Anschließend kehren Sie zum Konfigurationsfenster zurück und schicken nun die Konfiguration durch Betätigen der Schaltfläche **Send** an den Transmitter. Die Übertragungsfunktion der Meßumformer P 32xxx kann über Polynome individuell angepaßt werden. Diese Funktion kann beispielsweise zur Linearisierung verwendet werden. Der Anwender kann damit die charakteristische Funktionskurve des Eingangswerts aufzeichnen und die Parameter für ein Polynom berechnen, das die aufgezeichnete Kurve beschreibt. Die Anpassung des Eingangssignals kann dabei mit Polynomen bis zur Ordnung n= 10 erfolgen. Nach der Berechnung ist zu überprüfen, ob der maximale Fehler in der Anwendung tolerierbar ist.

Das Polynom, das auf den Eingangswert (x) des Meßumformers, ausgedrückt in % der kalibrierten Meßspanne, angewandt wird, hat folgende Form:

Out = $a_0 + a_1(x) + a_2(x^2) + a_3(x^3) + \dots + a_9(x^9)$

wobei (x) und Out im Bereich 0 bis 1 zu Rechenzwecken normiert sein müssen, mit folgenden Werten für Out:

Out = 0 entspricht einem Ausgangswert von 0% (z. B. 4 mA)

Out = 1 entspricht einem Ausgangswert von 100% (z. B. 20 mA)

Um das Prinzip zu verdeutlichen, finden Sie auf den nächsten Seiten als Beispiel die Vorgehensweise für einen Kugeltank.

Meßwertaufbereitung - Kugeltank

Der angedeutete potentiometrische Füllstandsmesser gibt das aktuelle Volumen als Prozentwert vom Gesamtvolumen aus. wobei 100% voller Tank und 0% leerer Tank bedeuten. Für die weitergehende Berechnung ist es notwendig 100% gleich 1 zu setzen und die Füllstände als Teilbereiche der Füllstandshöhe zwischen 1 (voll) und 0 (leer) zu betrachten. Das folgende Polynom ergibt das Teilvolumen des Kugelabschnittes abhängig von der Höhe h (Füllstand der Flüssigkeit im Tank): Out = $3 h^2 - 2 h^3$ (Herleitung siehe Anhang)

Wie Sie die Polynomkoeffizienten in der Software verwenden, sehen Sie auf den nächsten Seiten.

Polynomkoeffizienten in der Software

🎢 Paraly_SW111 🗱 📢
Config Measure Simulation Ident X
Sensor
Potentiometer 🗸
Connection
3-wire 🔻
Start End
Set actual meas value to
Start End
Output Characteristic curve
Param
Data to / from file Data to / from device
Save Load Send Load
•)) (Config ? 📖 ^

Im Konfigurationsfenster wählen Sie die ihrer Installation gemäßen Werte für **Sensor, Connection** und **Output**. Setzen Sie die Werte für **Start** und **Ende**. Im diesem Beispiel sind dies 0 % und 100 %. Wählen Sie unter **Characteristic curve** Polynomial und betätigen dann die Schaltfläche **Param**.

🎥 Paraly_SW111	_ # €
a0 🕘 0.00000E+0	a5 🕘 0.00000E+0
a1 🗧 0.00000E+0	a6 🗧 0.00000E+0
a2 (3.00000E+0	a7 🕘 0.00000E+0
a3 🗧 <mark>-2</mark>	a8 🗧 0.00000E+0
a4 🗧 0.00000E+0	a9 🕀 0.00000E+0
Please enter the poly	ynomial coefficents.
Ok	Cancel ?
	 .

Geben Sie hier die Polynomkoeffizienten ein. Für den Kugeltank sind dies an der Stelle

a2 der Wert 3

und

a3 der Wert -2.

Die weiteren Stellen werden automatisch aufgefüllt.

Mit **OK** übernehmen Sie die Daten.

Aufgrund der soeben vorgenommenen Programmierung ist der Transmitter nunmehr in der Lage, die Eingangswerte des potentiometrischen Füllstandsmessers so anzupassen, daß am Transmitterausgang Werte zur Verfügung stehen, die den tatsächlichen Volumenverhältnissen im Tank entsprechen.

Grafik - folgende Seite

Projektion des Ablaufs der Werteanpassung von der Erfassung bis zur Ausgabe auf den Kugeltank

Polynomkoeffizienten - Füllstandsmessung - Zusammenfassung

	Nach Polynombe- rechnung	Korrekter Ausgangswert am Transmitter in mA (Bereich 0 bis 20mA)	Tatsächlicher Füllstand (wird auf dem PDA angezeigt) in %
len	1	20	100
nach c	0,972	19,44	97,2
nitter n	0,896	17,92	89,6
Transm W111	0,784	15,68	78,4
g im J araly S	0,648	12,96	64,8
assun /are Pa	0,5	10	50
rteanp Softw	0,352	7,04	35,2
ie We us der	0,216	4,32	21,6
omisch ben au	0,104	2,08	10,4
Polync Vorgal	0,028	0,56	2,8
	0	0	0

Anhang

P 32000: Bedienung über IrDA-Schnittstelle

Position der	Drehcodier- schalter				Funktion
DIP-Schalter	1	2	3	4	
alle ON*	0	0	0	0	IrDA Konfiguration, Lesen / Schreiben
alle OFF*	0	0	0	0	IrDA Konfiguration, nur Lesen

* alle anderen Schalterstellungen: Konfiguration wie Schalter, IrDA nur Lesen

P 32000: Fehlersignalisierung am Gerät

rot: Fehlerstatus; die LED blinkt mit der Anzahl der Fehlernummer

			Ausgar	ng [mA]	Ausgang [V]	
Nr.	Fehler	M*	4 20	0 20	0 5	0 10
1	Meßbereich unterschritten		3,6	0	0	0
2	Meßbereich überschritten		21	21	5,25	10,5
3	Sensor Kurzschluß		21	21	5,25	10,5
4	Sensor offen		21	21	5,25	10,5
5	Poti / DMS: Fehler Widerstand		21	21	5,25	10,5
6**	Ausgangsfehler Bürde		3,6	0	0	0
7	Anschlußerkennung		21	21	5,25	10,5
8	Schalter verstellt		21	21	5,25	10,5
9	Parametrierfehler		21	21	5,25	10,5
10	Gerätefehler		3,6	0	0	0

M*) Meldungskonfiguration. Grau dargestellt: selbsthaltend ****)** Ausgangsfehler Bürde nur bei Ausführung P32000P0/1x

Bei Transmittern ohne Zulassung nach IEC/EN 61508 (SIL) wird die Meldungskonfiguration "selbsthaltend" nur bei der Fehlermeldung 10 verwendet. Gerätefehler: Bitte nehmen Sie Kontakt zum Kundendienst auf.

н

P 32000: Eingangsbeschaltung

RTD/ Widerstand: 4-Leiter

Widerstand:

Potentiometer:

3-Leiter

3-Leiter

Spannung

RTD/ Widerstand: 2-Leiter:

Shunt

(bei 2-Leiter-Messung mit $R > 5k\Omega$ ist eine Brücke

zwischen Klemme 1 und Klemme 2 zu setzen)

Erweiterte Eingangsbeschaltung über Paraly

Potentiometer / 4-Leiter

3-Leiter

RTD Differenz / TC Differenz

Ext. Kaltstellenkompensation Pt 100

TC Summenschaltung

Klemme 1: Brückenspeisespannung (+) Klemme 4: Brückenspeisespannung (-)

Klemme 2: Meßsignal (+)

Klemme 3: Meßsignal (-)

DMS externe Speisung (1 ... 3 V) Klemme 1: Fühlerleitung (+) Klemme 4: Fühlerleitung (-) Klemme 2: Meßsignal (+) Klemme 3: Meßsignal (-)

Herleitung der normierten Formel zur Füllhöhenbestimmung eines Kugeltanks

Kugelvolumen:

$$V_{g} = \frac{4}{3}\pi \cdot r^{3}$$

Volumen eines Kugelabschnittes:

$$V_{a} = \frac{\pi}{3}h^{2}(3r - h)$$

Verhältnis des Volumens eines Kugelabschnittes zu dem Kugelgesamtvolumen

$$\frac{V_{a}}{V_{g}} = \frac{\frac{\pi}{3}h^{2}(3r-h)}{\frac{4}{3}\pi \cdot r^{3}} = \frac{h^{2} \cdot (3r-h)}{4 \cdot r^{3}}$$

normiert mit r=0,5 und h=0...1

$$\frac{V_{a}}{V_{g}} = \frac{h^{2}\left(\frac{3}{2} - h\right)}{4 \cdot \frac{1}{8}} = 3h^{2} - 2h^{3}$$

Ergebnis:

 $a_2 = 3$ $a_3 = -2$

Mögliche Fehlermeldungen beim IrDA Verbindungsaufbau

No device found!

Es ist kein Transmitter mit aktivierter IrDA Schnittstelle in Reichweite.

Unknown type of transmitter!

Es wurde ein Transmitter gefunden, dieser wird aber von dieser Paraly Version nicht unterstützt. Paraly 2.0 unterstützt die Transmitter P32000, P32100, P32200 und P32300.

Different transmitter!

Config Mode identifiziert den Transmitters anhand der Seriennummer. Ein erneuter Verbindungsaufbau (z. B. mit Button Reconnect) zu einem Transmitter mit anderer Seriennummer verursacht eine Fehlermeldung. Es muß zunächst ein "Load data from device" durchgeführt werden. Ein geänderter Datensatz kann damit nach einer Verbindungsunterbrechung nicht versehentlich in einen anderen Zieltransmitter geschrieben werden.

Aborted by user!

Der Anwender hat den Password-Dialog mit Cancel verlassen.

Communication error!

Es ist zwar ein Transmitter in Reichweite, die Kommunikation kann aber nicht lückenlos ausgeführt werden.

TE-254.111-KND02 211106

Softwareversion 2.x